物理模拟技术在沁水煤层气藏水动力研究中的应用Application of physical simulation in the study of hydrodynamic conditions of Qinshui coalbed methane reservoir
王勃,李贵中,马京长,刘俊,孙粉锦,王红岩,刘洪林
WANG Bo1,LI Guizhong1,MA Jingzhang1,LIU Jun2,SUN Fenjin1,WANG Hongyan1,LIU Honglin1(1.Langfang Branch
摘要(Abstract):
通过煤层气成藏模拟实验,研究了水动力条件对煤层气成藏的控制作用。实验结果表明:在强烈的水动力交替作用下,煤层气藏中的甲烷碳同位素由-29.50‰变为-36.60‰,且变轻过程中具有阶段性特征;甲烷体积分数由96.35%减小为12.42%;二氧化碳由0.75%变为0.68%,随后增大到1.13%;氮气体积分数由2.9%变为86.45%。这些变化一方面说明煤层气成藏过程的复杂性,另一方面表明强烈的水动力作用对煤层气成藏会造成不利影响。通过对以高煤阶为典型特点的沁水盆地南部水动力条件的分析,认为径流强度与煤层含气量之间呈负相关性,弱径流区有可能成为高煤阶煤层气富集的高产区。
Using the CBM reservoir simulation facilities,the action of hydrodynamic force controlling coalbed methane(CBM) reservoir formation was studied in this paper.The results of experiment showed that under the strong hydrodynamic alternation,δC1 of coalbed methane reservoir changes from -29.50‰ to -36.60‰,and the lightening process was characterized by phases;CH4 volume content was reduced from 96.35% to 12.42%;CO2 content decreased from 0.75% to 0.68%,then rised to 1.13%;N2 content changed from 2.9% to 86.45%.On one hand,these changes showed the complexity of CBM reservoir formation,on the other hand,they indicated that the strong hydrodynamic action had unfavorable impact on CBM reservoir formation.Meanwhile,the hydrodynamic condition of Qinshui basin with high coal rank was analyzed,and it was found that gas content and hydrodynamic intensity had negative correlation,low hydrodynamic flow condition might result in the high productive and en-richment area of high rank CBM.
关键词(KeyWords):
煤层气藏;水动力条件;物理模拟;沁水盆地
coalbed methane reservoir;hydrodynamic condition;physical simulation;Qinshui basin
基金项目(Foundation): 国家科技重大专项大型油气田及煤层气开发项目(2008ZX05033-001);; 国家重点基础研究发展计划(973计划)项目(2009CB219601)
作者(Author):
王勃,李贵中,马京长,刘俊,孙粉锦,王红岩,刘洪林
WANG Bo1,LI Guizhong1,MA Jingzhang1,LIU Jun2,SUN Fenjin1,WANG Hongyan1,LIU Honglin1(1.Langfang Branch
参考文献(References):
- [1]王红岩,刘洪林,赵庆波,等.中国煤层气富集成藏规律[M].北京:石油工业出版社,2004:88-90.
- [2]刘方槐,颜婉荪.油气田水文地质学原理[M].北京:石油工业出版社,1991:1-5.
- [3]张义纲,陈彦华,陆嘉炎,等.油气运移及其聚集成藏模型[M].南京:河海大学出版社,1997:1-8.
- [4]KAISER W R.Geologic and hydrologic characterization of coalbed-methane reservoirs in the San Juan basin[J].SPE Forma-tion Evalution,1994,9(3):175-184.
- [5]秦胜飞,宋岩,唐修义,等.水动力条件对煤层气含量的影响-煤层气滞流水控气论[J].天然气地球科学,2005,16(2):149-152.
- [6]秦胜飞,宋岩,唐修义,等.流动的地下水对煤层含气性的破坏机理[J].科学通报,2005,50(增刊I):99-104.
- [7]胡国艺,关辉,蒋等文,等.山西沁水煤层气田煤层气成藏条件分析[J].中国地质,2004,31(2):213-217.
- [8]唐书恒,马彩霞,叶建平,等.注二氧化碳提高煤层甲烷采收率的实验模拟[J].中国矿业大学学报,2006,35(5):607-611.
- [9]苏现波,陈润,林晓英,等.煤层气运移分馏机理初探[J].河南理工大学学报,2006,2(4):295-301.
- [10]秦勇,唐修义,叶建平,等.中国煤层甲烷稳定碳同位素分布与成因探讨[J].中国矿业大学学报,2000,29(2):113-119.
- [11]傅晓泰,卢双航,王振平,等.天然气组分的溶解特征及其意义[J].地球化学,1997,16(3):60-66.
- [12]李剑,胡国艺,谢增业,等.中国大中型气田天然气成藏物理化学模拟研究[M].北京:石油工业出版社,2001:94-96.
- [13]唐书恒,韩德馨.用多元气体等温吸附成果评价煤层气开发潜力[J].中国矿业大学学报,2002,31(6):630-633.
文章评论(Comment):
|
||||||||||||||||||
|