煤田地质与勘探

2005, (01) 69-72

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

优化人工神经网络在折射波静校正中的应用
The application of optimized artificial neural network to refraction static correction

罗银河,董桥梁,俞国柱
LUO Yin-he; DONG Qiao-Liang ;YU Guo-zhu(Institute of Geophysics & Geomatics;

摘要(Abstract):

应用优化人工神经网络进行折射波初至拾取 ,结合微测井和小折射资料反演风化层以及折射层速度 ,并利用Taner全三维静校正原理进行折射波静校正。实际资料计算结果表明 :该方法有效提高了折射波初至拾取的效率 ,很好地实现了CMP的“同相叠加” ,较好地改善了叠加剖面的信噪比和剖面的横向分辨率
Optimized artificial neural network is used to pick refraction first arrival times, log and field refraction data are combined to inverse weathering layer velocity and refraction layer velocity, and Taner’s 3-D refraction static correction is applied in this paper. The result of real data shows that the work efficiency is enhanced by using Optimized artificial neural network to pick refraction first arrival times, the CMP gathers are stacked in phase and the ratio of S/N and transversal resolution of the stacked profile are improved.

关键词(KeyWords): 优化人工神经网络;折射波静校正;实际资料
optimized artificial neural network; refraction static correction; real data.

Abstract:

Keywords:

基金项目(Foundation):

作者(Authors): 罗银河,董桥梁,俞国柱
LUO Yin-he; DONG Qiao-Liang ;YU Guo-zhu(Institute of Geophysics & Geomatics;

参考文献(References):

文章评论(Comment):

序号(No.) 时间(Time) 反馈人(User) 邮箱(Email) 标题(Title) 内容(Content)
反馈人(User) 邮箱地址(Email)
反馈标题(Title)
反馈内容(Content)
扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享